【4/18更新】CiNii ArticlesのCiNii Researchへの統合について

H3K9 Demethylases JMJD1A and JMJD1B Control Prospermatogonia to Spermatogonia Transition in Mouse Germline

抄録

Histone H3 lysine 9 (H3K9) methylation is dynamically regulated by methyltransferases and demethylases. In spermatogenesis, prospermatogonia differentiate into differentiating or undifferentiated spermatogonia after birth. However, the epigenetic regulation of prospermatogonia to spermatogonia transition is largely unknown. We found that perinatal prospermatogonia have extremely low levels of di-methylated H3K9 (H3K9me2) and that H3K9 demethylases, JMJD1A and JMJD1B, catalyze H3K9me2 demethylation in perinatal prospermatogonia. Depletion of JMJD1A and JMJD1B in the embryonic germline resulted in complete loss of male germ cells after puberty, indicating that H3K9me2 demethylation is essential for male germline maintenance. JMJD1A/JMJD1B-depleted germ cells were unable to differentiate into functional spermatogonia. JMJD1 isozymes contributed to activation of several spermatogonial stem cell maintenance genes through H3K9 demethylation during the prospermatogonia to spermatogonia transition, which we propose is key for spermatogonia development. In summary, JMJD1A/JMJD1B-mediated H3K9me2 demethylation promotes prospermatogonia to differentiate into functional spermatogonia by establishing proper gene expression profiles.

収録刊行物

  • Stem Cell Reports

    Stem Cell Reports 15 (2), 424-438, 2020-07-16

    International Society for Stem Cell Research|Cell Press

被引用文献 (0)*注記

もっと見る

参考文献 (35)*注記

もっと見る

関連論文

もっと見る

関連研究データ

もっと見る

関連図書・雑誌

もっと見る

関連博士論文

もっと見る

関連プロジェクト

もっと見る

関連その他成果物

もっと見る

詳細情報

問題の指摘

ページトップへ