[Updated on Apr. 18] Integration of CiNii Articles into CiNii Research

Enhancement of critical heat flux using spherical porous bodies in saturated pool boiling of nanofluid

IR

Abstract

type:学術雑誌論文 / Journal Article

One strategy to address severe nuclear accidents is the in-vessel retention (IVR) of corium debris. IVR consists of the external cooling of the reactor vessel to remove the decay heat from the molten core through the lower head of the vessel. However, heat removal is limited by the occurrence of the critical heat flux (CHF) condition at the outer surface of the reactor vessel. Therefore, we propose a CHF enhancement technique in a saturated pool boiling by the attachment of a honeycomb porous plate (HPP) on the heated surface. However, the reactor vessel on which to install the HPP exhibits curvature, so the key to realizing IVR depends on the placement of the HPP on the curved surface of the reactor vessel. Accordingly, we propose an approach using porous cellulose beads and a nanofluid. Consequently, for the combination of the nanofluid (TiO2, 0.1 vol%) and spherical porous bodies, the CHF is demonstrated to be enhanced by up to a maximum factor of two compared to that of a plain surface of distilled water.

Journal

Citations (0)*help

See more

References(0)*help

See more

Related Articles

See more

Related Data

See more

Related Books

See more

Related Dissertations

See more

Related Projects

See more

Related Products

See more

Details

  • CRID
    1050845762757366144
  • NII Article ID
    120006695788
  • ISSN
    13594311
  • Web Site
    http://hdl.handle.net/10131/00012094
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles
    • KAKEN

Report a problem

Back to top