Fibril Growth Behavior of Amyloid beta on Polymer-Based Planar Membranes: Implications for the Entanglement and Hydration of Polymers

抄録

The design of biosensors and artificial organs using biocompatible materials with a low affinity for amyloid beta peptide (A beta) would contribute to the inhibition of fibril growth causing Alzheimer's disease. We systematically studied the amyloidogenicity of A beta on various planar membranes. The planar membranes were prepared using biocompatible polymers, viz., poly(methyl methacrylate) (PMMA), polysulfone (PSf), poly(L-lactic acid) (PLLA), and polyvinylpyrrolidone (PVP). Phospholipids from biomembranes, viz., 1,2-dioleoyl-phosphatidylcholine (DOPC), 1,2-dipalmitoyl-phosphatidylcholine (DPPC), and polyethylene glycol-graft-phosphatidyl ethanolamine (PEG-PE) were used as controls. Phospholipid- and polymer-based membranes were prepared to determine the kinetics of A beta fibril formation. Rates of A beta nucleation on the PSf- and DPPC-based membranes were significantly higher than those on the other membranes. A beta accumulation, calculated by the change in frequency of a quartz crystal microbalance (QCM), followed the order: PSf > PLLA > DOPC > PMMA, PVP, DPPC, and PEG-PE. Nucleation rates exhibited a positive correlation with the corresponding accumulation (except for the DPPC-based membrane) and a negative correlation with the molecular weight of the polymers. Strong hydration along the polymer backbone and polymer-A beta entanglement might contribute to the accumulation of A beta and subsequent fibrillation.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1050851553049872896
  • NII論文ID
    120007098537
  • ISSN
    20763417
  • Web Site
    https://ousar.lib.okayama-u.ac.jp/62245
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • IRDB
    • CiNii Articles

問題の指摘

ページトップへ