- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey
Search this article
Description
<jats:title>Summary</jats:title><jats:p><jats:list list-type="bullet"><jats:list-item><jats:p>Litter decomposition determines carbon (C) backflow to the atmosphere and ecosystem nutrient cycling. Although sunlight provides the indispensable energy for terrestrial biogeochemical processes, the role of photodegradation in decomposition has been relatively neglected in productive mesic ecosystems.</jats:p></jats:list-item><jats:list-item><jats:p>To quantify the effects of this variation, we conducted a factorial experiment in the understorey of a temperate deciduous forest and an adjacent gap, using spectral‐attenuation‐filter treatments.</jats:p></jats:list-item><jats:list-item><jats:p>Exposure to the full spectrum of sunlight increased decay rates by nearly 120% and the effect of blue light contributed 75% of this increase. Scaled‐up to the whole forest ecosystem, this translates to 13% loss of leaf‐litter C through photodegradation over the year of our study for a scenario of 20% gap. Irrespective of the spectral composition, herbaceous and shrub litter lost mass faster than tree litter, with photodegradation contributing the most to surface litter decomposition in forest canopy gaps. Across species, the initial litter lignin and polyphenolic contents predicted photodegradation by blue light and ultraviolet B (UV‐B) radiation, respectively.</jats:p></jats:list-item><jats:list-item><jats:p>We concluded that photodegradation, modulated by litter quality, is an important driver of decomposition, not just in arid areas, but also in mesic ecosystems such as temperate deciduous forests following gap opening.</jats:p></jats:list-item></jats:list></jats:p>
Journal
-
- New Phytologist
-
New Phytologist 229 (5), 2625-2636, 2021-03
Wiley
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1050856000559306496
-
- NII Book ID
- AA00755407
-
- ISSN
- 14698137
- 0028646X
-
- HANDLE
- 10138/328207
- 2241/0002004828
-
- PubMed
- 33098087
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- IRDB
- Crossref
- KAKEN
- OpenAIRE