Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction
-
- Kosuke Minami
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
-
- Gaku Imamura
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
-
- Ryo Tamura
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
-
- Kota Shiba
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
-
- Genki Yoshikawa
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
Description
<jats:p>Nanomechanical sensors have gained significant attention as powerful tools for detecting, distinguishing, and identifying target analytes, especially odors that are composed of a complex mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform for artificial olfaction in combination with data processing technologies, including machine learning techniques. This paper reviews the background of nanomechanical sensors, especially conventional cantilever-type sensors. Then, we focus on one of the optimized structures for static mode operation, a nanomechanical Membrane-type Surface stress Sensor (MSS), and discuss recent advances in MSS and their applications towards artificial olfaction.</jats:p>
Journal
-
- Biosensors
-
Biosensors 12 (9), 762-, 2022-09-16
MDPI AG