Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm
-
- Zhao Peng
- 九州大学大学院総合理工学府
-
- Yuan Zhongxian
- Faculty of Environment and Life, Beijing University of Technology
-
- Thu Kyaw
- 九州大学大学院総合理工学府
-
- 宮崎 隆彦
- 九州大学大学院総合理工学府
この論文をさがす
説明
This article preprocesses environmental information and use it as input for the Proximal Policy Optimization (PPO) algorithm. The algorithm is directly trained on a model vehicle in a real environment, allowing it to control the distance between the vehicle and surrounding objects. The training converges after approximately 200 episodes, demonstrating the PPO algorithm's ability to tolerate uncertainty, noise, and interference in a real training environment to some extent. Furthermore, tests of the trained model in different scenarios reveal that even when the input information is processed and does not provide a comprehensive view of the environment, the PPO algorithm can still effectively achieve control objectives and accomplish challenging tasks.
収録刊行物
-
- Evergreen
-
Evergreen 11 (2), 887-899, 2024-06
九州大学グリーンテクノロジー研究教育センター
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390019435379627776
-
- DOI
- 10.5109/7183372
-
- ISSN
- 24325953
- 21890420
-
- HANDLE
- 2324/7183372
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- IRDB
- Crossref
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用可


