Real-World Autonomous Driving Control: An Empirical Study Using the Proximal Policy Optimization (PPO) Algorithm

この論文をさがす

説明

This article preprocesses environmental information and use it as input for the Proximal Policy Optimization (PPO) algorithm. The algorithm is directly trained on a model vehicle in a real environment, allowing it to control the distance between the vehicle and surrounding objects. The training converges after approximately 200 episodes, demonstrating the PPO algorithm's ability to tolerate uncertainty, noise, and interference in a real training environment to some extent. Furthermore, tests of the trained model in different scenarios reveal that even when the input information is processed and does not provide a comprehensive view of the environment, the PPO algorithm can still effectively achieve control objectives and accomplish challenging tasks.

収録刊行物

  • Evergreen

    Evergreen 11 (2), 887-899, 2024-06

    九州大学グリーンテクノロジー研究教育センター

詳細情報 詳細情報について

  • CRID
    1390019435379627776
  • DOI
    10.5109/7183372
  • ISSN
    24325953
    21890420
  • HANDLE
    2324/7183372
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • JaLC
    • IRDB
    • Crossref
    • OpenAIRE
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ