離散凸解析(<特集>最適化の数理)

書誌事項

タイトル別名
  • Discrete convex analysis(<Special Topics>Applied mathematics in optimization problem)
  • 離散凸解析
  • リサン トツカイセキ

この論文をさがす

説明

A theory of "discrete convex analysis" is developed for integer-valued functions defined on integer lattice points. The theory parallels the ordinary convex analysis, covering discrete analogues of the fundamental concepts such as conjugacy, subgradients, the Fenchel min-max duality, separation theorems and the Lagrange duality framework for convex/nonconvex optimization. The technical development is based on matroid-theoretic concepts, in particular, submodular functions and exchange axioms. This paper extends our understanding of the relationship between convex functions and submodular functions investigated in the eighties by A. Frank, S. Fujishige, L. Lovasz and others, and also explores a novel duality framework in nonlinear integer programming.

収録刊行物

  • 応用数理

    応用数理 6 (4), 259-269, 1996

    一般社団法人 日本応用数理学会

被引用文献 (1)*注記

もっと見る

参考文献 (12)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ