- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Fayalite rhyolites and a zoned magma chamber of the Paleocene Yakutinskaya volcanic depression in Primorye, Russia
-
- GREBENNIKOV Andrei V.
- Far East Geological Institute, Prospect Stoletia
-
- MAKSIMOV Sergey O.
- Far East Geological Institute, Prospect Stoletia
Search this article
Description
During the Late Paleocene, at least five ignimbrite units were emplaced from the Yakutinskaya caldera complex in Primorye, Russia. The erupted ignimbrites show two distinct chemical cycles, believed to represent the “high”-silica and “low”-silica parts of the compositionally zoned magma chamber. Two petrographically distinctive types of rhyolites are distinguishable in each chemical cycle, based on their phenocryst chemistry and silica content: (1) “low”-silica rhyolites with mineral assemblages of quartz, sanidine, plagioclase, ferrohypersthene, ferroaugite (Ca41Mg21Fe38), biotite, and hornblende, and (2) “high”-silica rhyolites with a similar mineral assemblage to “low”-silica, but containing more Fe-rich clinopyroxene (Ca44Mg2Fe54) and biotite, and a with lower phenocryst abundance. This difference is related to the variation in chemical composition and temperature of the magma in the zoned magma chamber for each eruption cycle. Rb-Sr mineral-rock isochron ages show that the ignimbrites erupted between 59.7 ± 1.6 and 54.8 ± 2.6 (2σ) Ma (Late Paleocene), and initial 87Sr/86Sr ratios are distinct in the different ignimbrite units. The “high”-silica rhyolites show the highest 87Sr/86SrI ratios (0.70810-0.70738), whereas “low”-silica rhyolites show lower 87Sr/86SrI ratios (0.70659-0.70724). The compositional zoning of the single magma chamber can be explained by the large-scale mass transport in the liquid phase due to roofward migration and concentration of volatile species.
Journal
-
- Journal of Mineralogical and Petrological Sciences
-
Journal of Mineralogical and Petrological Sciences 101 (2), 69-88, 2006
Japan Association of Mineralogical Sciences
- Tweet
Details 詳細情報について
-
- CRID
- 1390282681523670656
-
- NII Article ID
- 10016747664
-
- NII Book ID
- AA11460926
-
- ISSN
- 13493825
- 13456296
-
- Text Lang
- en
-
- Data Source
-
- JaLC
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed