[Updated on Apr. 18] Integration of CiNii Articles into CiNii Research

Representation of Torsion Points on Pairing Curves of Embedding Degree 1

Search this article

Abstract

Recent efficient pairings such as Ate pairing use two efficient rational point subgroups such that π(P) = P and π(Q) = [p]Q, where π, p, P, and Q are the Frobenius map for rational point, the characteristic of definition field, and torsion points for pairing, respectively. This relation accelerates not only pairing but also pairing–related operations such as scalar multiplications. It holds in the case that the embedding degree k divides r − 1, where r is the order of torsion rational points. Thus, such a case has been well studied. Alternatively, this paper focuses on the case that the degree divides r + 1 but does not divide r − 1. Then, this paper shows a multiplicative representation for r–torsion points based on the fact that the characteristic polynomial f(π) becomes irreducible over Fr for which π also plays a role of variable.

Journal

Citations (0)*help

See more

References(0)*help

See more

Related Articles

See more

Related Data

See more

Related Books

See more

Related Dissertations

See more

Related Projects

See more

Related Products

See more

Details

Report a problem

Back to top