【7/12更新】2022年4月1日からのCiNii ArticlesのCiNii Researchへの統合について

Implementation and Evaluation of Parallel Support Vector Machine using Divide and Conquer Method on Parallel Computer

この論文をさがす

抄録

Support Vector Machine (SVM) is a kind of pattern classification method. Because learning of SVM is based on quadratic optimization, SVM can easily handle large scale problems with many training examples. But learning of SVM takes a long time for such large problems. In this paper, we parallelize Support Vector Machine using divide and conquer method. In addition, we discuss accuracy of parallel SVM, and evaluated learning time. Experimental results show that parallel SVM achieves faster learning with keeping accuracy than that of sequential SVM.

収録刊行物

関連論文

もっと見る

関連研究データ

もっと見る

関連図書・雑誌

もっと見る

関連博士論文

もっと見る

関連プロジェクト

もっと見る

関連その他成果物

もっと見る

詳細情報

ページトップへ