【2022年1月締切】CiNii ArticlesへのCiNii Researchへの統合に伴う機関認証の移行確認について

【1/6更新】2022年4月1日からのCiNii ArticlesのCiNii Researchへの統合について

Understanding the Fake Removal Information Advertisement Sites

この論文をさがす

抄録

Fake antivirus (AV) software is a type of malware that disguises as legitimate antivirus software and causes harm to users and their devices. Fake removal information advertisement (FRAD) sites, which introduce fake removal information for cyber threats, have emerged as platforms for distributing fake AV software. Although FRAD sites seriously threaten users who have been suffering from cyber threats and need information for removing them, little attention has been given to revealing these sites. In this paper, we propose a system to automatically crawl the web and identify FRAD sites. To shed light on the pervasiveness of this type of attack, we performed a comprehensive analysis of both passively and actively collected data. Our system collected 2,913 FRAD sites in 31 languages, which have 73.5 million visits per month in total. We show that FRAD sites occupy search results when users search for cyber threats, thus preventing the users from obtaining the correct information.------------------------------This is a preprint of an article intended for publication Journal ofInformation Processing(JIP). This preprint should not be cited. Thisarticle should be cited as: Journal of Information Processing Vol.29(2021) (online)DOI http://dx.doi.org/10.2197/ipsjjip.29.392------------------------------

Fake antivirus (AV) software is a type of malware that disguises as legitimate antivirus software and causes harm to users and their devices. Fake removal information advertisement (FRAD) sites, which introduce fake removal information for cyber threats, have emerged as platforms for distributing fake AV software. Although FRAD sites seriously threaten users who have been suffering from cyber threats and need information for removing them, little attention has been given to revealing these sites. In this paper, we propose a system to automatically crawl the web and identify FRAD sites. To shed light on the pervasiveness of this type of attack, we performed a comprehensive analysis of both passively and actively collected data. Our system collected 2,913 FRAD sites in 31 languages, which have 73.5 million visits per month in total. We show that FRAD sites occupy search results when users search for cyber threats, thus preventing the users from obtaining the correct information.------------------------------This is a preprint of an article intended for publication Journal ofInformation Processing(JIP). This preprint should not be cited. Thisarticle should be cited as: Journal of Information Processing Vol.29(2021) (online)DOI http://dx.doi.org/10.2197/ipsjjip.29.392------------------------------

収録刊行物

被引用文献 (0)*注記

もっと見る

参考文献 (0)*注記

もっと見る

関連論文

もっと見る

関連研究データ

もっと見る

関連図書・雑誌

もっと見る

関連博士論文

もっと見る

関連プロジェクト

もっと見る

関連その他成果物

もっと見る

詳細情報

ページトップへ