Control of fusion and cohomology of trivial source modules
説明
Let G be a finite group and H a subgroup. We give an algebraic proof of Mislin's theorem which states that the restriction map from G to H on mod-p cohomology is an isomorphism if and only if H controls p-fusion in G. We follow the approach of P. Symonds [P. Symonds, Mackey functors and control of fusion, Bull. London Math. Soc. 36 (2004) 623?632] and consider the cohomology of trivial source modules.
収録刊行物
-
- JOURNAL OF ALGEBRA
-
JOURNAL OF ALGEBRA 317 (2), 462-470, 2007-11
ACADEMIC PRESS INC ELSEVIER SCIENCE
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050001202942737152
-
- NII論文ID
- 120006384626
-
- ISSN
- 00218693
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- CiNii Articles
- KAKEN