Real symmetric $$ \Phi ^4$$-matrix model as Calogero–Moser model

説明

<jats:title>Abstract</jats:title><jats:p>We study a real symmetric <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Phi ^4$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>Φ</mml:mi> <mml:mn>4</mml:mn> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>-matrix model whose kinetic term is given by <jats:inline-formula><jats:alternatives><jats:tex-math>$$\textrm{Tr}( E \Phi ^2)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtext>Tr</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>E</mml:mi> <mml:msup> <mml:mi>Φ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>, where <jats:italic>E</jats:italic> is a positive diagonal matrix without degenerate eigenvalues. We show that the partition function of this matrix model corresponds to a zero-energy solution of a Schrödinger type equation with Calogero–Moser Hamiltonian. A family of differential equations satisfied by the partition function is also obtained from the Virasoro algebra.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (13)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ