Krylov complexity and chaos in quantum mechanics

説明

<jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>Recently, Krylov complexity was proposed as a measure of complexity and chaoticity of quantum systems. We consider the stadium billiard as a typical example of the quantum mechanical system obtained by quantizing a classically chaotic system, and numerically evaluate Krylov complexity for operators and states. Despite no exponential growth of the Krylov complexity, we find a clear correlation between variances of Lanczos coefficients and classical Lyapunov exponents, and also a correlation with the statistical distribution of adjacent spacings of the quantum energy levels. This shows that the variances of Lanczos coefficients can be a measure of quantum chaos. The universality of the result is supported by our similar analysis of Sinai billiards. Our work provides a firm bridge between Krylov complexity and classical/quantum chaos.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (51)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ