First results of axion dark matter search with DANCE

この論文をさがす

説明

Axions are one of the well-motivated candidates for dark matter, originally proposed to solve the strong CP problem in particle physics. Dark matter Axion search with riNg Cavity Experiment (DANCE) is a new experimental project to broadly search for axion dark matter in the mass range of $10^{-17}~\mathrm{eV} < m_a < 10^{-11}~\mathrm{eV}$. We aim to detect the rotational oscillation of linearly polarized light caused by the axion-photon coupling with a bow-tie cavity. The first results of the prototype experiment, DANCE Act-1, are reported from a 24-hour observation. We found no evidence for axions and set 95% confidence level upper limit on the axion-photon coupling $g_{a γ} \lesssim 8 \times 10^{-4}~\mathrm{GeV^{-1}}$ in $10^{-14}~\mathrm{eV} < m_a < 10^{-13}~\mathrm{eV}$. Although the bound did not exceed the current best limits, this optical cavity experiment is the first demonstration of polarization-based axion dark matter search without any external magnetic field.

9 pages, 8 figures

収録刊行物

  • Physical Review D

    Physical Review D 108 (7), 2023-10-10

    American Physical Society (APS)

参考文献 (30)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ