<scp>ChemTSv2</scp>: Functional molecular design using de novo molecule generator
-
- Shoichi Ishida
- Graduate School of Medical Life Science Yokohama City University Yokohama Kanagawa Japan
-
- Tanuj Aasawat
- Parallel Computing Lab ‐ India, Intel Labs Bangalore Karnataka India
-
- Masato Sumita
- RIKEN Center for Advanced Intelligence Project Tokyo Japan
-
- Michio Katouda
- Research Organization for Information Science and Technology Tokyo Japan
-
- Tatsuya Yoshizawa
- Graduate School of Medical Life Science Yokohama City University Yokohama Kanagawa Japan
-
- Kazuki Yoshizoe
- Research Institute for Information Technology, Kyushu University Fukuoka Japan
-
- Koji Tsuda
- RIKEN Center for Advanced Intelligence Project Tokyo Japan
-
- Kei Terayama
- Graduate School of Medical Life Science Yokohama City University Yokohama Kanagawa Japan
この論文をさがす
説明
<jats:title>Abstract</jats:title><jats:p>Designing functional molecules is the prerogative of experts who have advanced knowledge and experience in their fields. To democratize automatic molecular design for both experts and nonexperts, we introduce a generic open‐sourced framework, ChemTSv2, to design molecules based on a de novo molecule generator equipped with an easy‐to‐use interface. Besides, ChemTSv2 can easily be integrated with various simulation packages, such as Gaussian 16 package, and supports a massively parallel exploration that accelerates molecular designs. We exhibit the potential of molecular design with ChemTSv2, including previous work, such as chromophores, fluorophores, drugs, and so forth. ChemTSv2 contributes to democratizing inverse molecule design in various disciplines relevant to chemistry.</jats:p><jats:p>This article is categorized under:<jats:list list-type="simple"> <jats:list-item><jats:p>Data Science > Databases and Expert Systems</jats:p></jats:list-item> <jats:list-item><jats:p>Data Science > Artificial Intelligence/Machine Learning</jats:p></jats:list-item> <jats:list-item><jats:p>Data Science > Computer Algorithms and Programming</jats:p></jats:list-item> </jats:list></jats:p>
収録刊行物
-
- WIREs Computational Molecular Science
-
WIREs Computational Molecular Science 13 (6), 2023-07-31
Wiley
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1360584340505893376
-
- ISSN
- 17590884
- 17590876
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE