General rigidity principles for stable and minimal elastic curves
-
- Tatsuya Miura
- Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.Current address: Department of Mathematics, Graduate School of Science , Kyoto University , Kitashirakawa Oikawa-cho, Sakyo-ku , Kyoto 606-8502 , Japan
-
- Kensuke Yoshizawa
- Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Current address: Faculty of Education , Nagasaki University , 1-14 Bunkyo-machi , Nagasaki , 852-8521 , Japan
この論文をさがす
説明
<jats:title>Abstract</jats:title> <jats:p>For a wide class of curvature energy functionals defined for planar curves under the fixed-length constraint, we obtain optimal necessary conditions for global and local minimizers. Our results extend Maddocks’ and Sachkov’s rigidity principles for Euler’s elastica by a new, unified and geometric approach. This in particular leads to complete classification of stable closed <jats:italic>p</jats:italic>-elasticae for all <jats:inline-formula id="j_crelle-2024-0018_ineq_9999"> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi mathvariant="normal">∞</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2024-0018_eq_0459.png" /> <jats:tex-math>{p\in(1,\infty)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and of stable pinned <jats:italic>p</jats:italic>-elasticae for <jats:inline-formula id="j_crelle-2024-0018_ineq_9998"> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy="false">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2024-0018_eq_0457.png" /> <jats:tex-math>{p\in(1,2]}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our proof is based on a simple but robust “cut-and-paste” trick without computing the energy nor its second variation, which works well for planar periodic curves but also extends to some non-periodic or non-planar cases. An analytically remarkable point is that our method is directly valid for the highly singular regime <jats:inline-formula id="j_crelle-2024-0018_ineq_9997"> <jats:alternatives> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mfrac> <m:mn>3</m:mn> <m:mn>2</m:mn> </m:mfrac> <m:mo stretchy="false">]</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2024-0018_eq_0458.png" /> <jats:tex-math>{p\in(1,\frac{3}{2}]}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in which the second variation may not exist even for smooth variations.</jats:p>
収録刊行物
-
- Journal für die reine und angewandte Mathematik (Crelles Journal)
-
Journal für die reine und angewandte Mathematik (Crelles Journal) 0 (0), 2024-04-24
Walter de Gruyter GmbH
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1360584340704357120
-
- ISSN
- 14355345
- 00754102
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE