Restriction of irreducible unitary representations of 𝑆𝑝𝑖𝑛(𝑁,1) to parabolic subgroups
説明
<p>In this paper, we obtain explicit branching laws for all irreducible unitary representations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G equals upper S p i n left-parenthesis upper N comma 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Spin</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">G=\operatorname {Spin}(N,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when restricted to a parabolic subgroup <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The restriction turns out to be a finite direct sum of irreducible unitary representations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also verify Duflo’s conjecture for the branching laws of discrete series representations of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. That is to show: in the framework of the orbit method, the branching law of a discrete series representation is determined by some geometric behavior of the moment map for the corresponding coadjoint orbit.</p>
収録刊行物
-
- Representation Theory of the American Mathematical Society
-
Representation Theory of the American Mathematical Society 27 (24), 887-932, 2023-09-21
American Mathematical Society (AMS)
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1360865816791924480
-
- DOI
- 10.1090/ert/658
-
- ISSN
- 10884165
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN