-
- Kenta Higuchi
- Ehime University, Matsuyama, Ehime, Japan
-
- Hisashi Morioka
- Ehime University, Matsuyama, Ehime, Japan
-
- Etsuo Segawa
- Yokohama National University, Yokohama, Kanagawa, Japan
この論文をさがす
説明
<jats:p> In this paper, resonances are introduced to a class of quantum walks on <jats:inline-formula> <jats:tex-math>\mathbb{Z}</jats:tex-math> </jats:inline-formula> . Resonances are defined as poles of the meromorphically extended resolvent of the unitary time evolution operator. In particular, they appear inside the unit circle. Some analogous properties to those of quantum resonances for Schrödinger operators are shown. Especially, the resonance expansion, an analogue of the eigenfunction expansion, indicates the long-time behavior of quantum walks. The decaying rate, the asymptotic probability distribution, and the weak limit of the probability density are described by resonances and associated (generalized) resonant states. The generic simplicity of resonances is also investigated. </jats:p>
収録刊行物
-
- Journal of Spectral Theory
-
Journal of Spectral Theory 14 (1), 207-244, 2024-04-18
European Mathematical Society - EMS - Publishing House GmbH
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1360865815515005056
-
- ISSN
- 16640403
- 1664039X
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE