この論文をさがす
説明
<p>Weighted projective lines, introduced by Geigle and Lenzing in 1987, are important objects in representation theory. They have tilting bundles, whose endomorphism algebras are the canonical algebras introduced by Ringel. The aim of this paper is to study their higher dimensional analogs. First, we introduce a certain class of commutative Gorenstein rings <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> graded by abelian groups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper L"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">L</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {L}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of rank <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which we call Geigle-Lenzing complete intersections. We study the stable category <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingBelow sans-serif upper C sans-serif upper M With bar Superscript double-struck upper L Baseline upper R"> <mml:semantics> <mml:mrow> <mml:msup> <mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">C</mml:mi> <mml:mi mathvariant="sans-serif">M</mml:mi> </mml:mrow> <mml:mo>_</mml:mo> </mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">L</mml:mi> </mml:mrow> </mml:mrow> </mml:msup> <mml:mi>R</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\underline {\mathsf {CM}}^{\mathbb {L}}R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of Cohen-Macaulay representations, which coincides with the singularity category <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif upper D Subscript normal s normal g Superscript double-struck upper L Baseline left-parenthesis upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">D</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">s</mml:mi> <mml:mi mathvariant="normal">g</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">L</mml:mi> </mml:mrow> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathsf {D}^{\mathbb {L}}_{\mathrm {sg}}(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingBelow sans-serif upper C sans-serif upper M With bar Superscript double-struck upper L Baseline upper R"> <mml:semantics> <mml:mrow> <mml:msup> <mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">C</mml:mi> <mml:mi mathvariant="sans-serif">M</mml:mi> </mml:mrow> <mml:mo>_</mml:mo> </mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">L</mml:mi> </mml:mrow> </mml:mrow> </mml:msup> <mml:mi>R</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\underline {\mathsf {CM}}^{\mathbb {L}}R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is triangle equivalent to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif upper D Superscript normal b Baseline left-parenthesis sans-serif m sans-serif o sans-serif d upper A Superscript normal upper C normal upper M Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="sans-serif">D</mml:mi> </mml:mrow> ...
収録刊行物
-
- Memoirs of the American Mathematical Society
-
Memoirs of the American Mathematical Society 285 (1412), 2023-05
American Mathematical Society (AMS)
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1360865815488807040
-
- ISSN
- 19476221
- 00659266
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN