Krylov complexity in the IP matrix model

説明

<jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>The IP matrix model is a simple large <jats:italic>N</jats:italic> quantum mechanical model made up of an adjoint harmonic oscillator plus a fundamental harmonic oscillator. It is a model introduced previously as a toy model of the gauge theory dual of an AdS black hole. In the large <jats:italic>N</jats:italic> limit, one can solve the Schwinger-Dyson equation for the fundamental correlator, and at sufficiently high temperature, this model shows key signatures of thermalization and information loss; the correlator decay exponentially in time, and the spectral density becomes continuous and gapless. We study the Lanczos coefficients <jats:italic>b</jats:italic><jats:sub><jats:italic>n</jats:italic></jats:sub> in this model and at sufficiently high temperature, it grows linearly in <jats:italic>n</jats:italic> with logarithmic corrections, which is one of the fastest growth under certain conditions. As a result, the Krylov complexity grows exponentially in time as <jats:inline-formula><jats:alternatives><jats:tex-math>$$ \sim \exp \left(\mathcal{O}\left(\sqrt{t}\right)\right) $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mo>∼</mml:mo> <mml:mo>exp</mml:mo> <mml:mfenced> <mml:mrow> <mml:mi>O</mml:mi> <mml:mfenced> <mml:msqrt> <mml:mi>t</mml:mi> </mml:msqrt> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:math></jats:alternatives></jats:inline-formula>. These results indicate that the IP model at sufficiently high temperature is chaotic.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (62)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ