Self-gravity and Bekenstein-Hawking entropy

この論文をさがす

説明

We study the effect of self-gravity on entropy by directly solving the 4D semi-classical Einstein equation. In particular, we focus on whether the Bekenstein-Hawking formula holds when self-gravity is extremely strong. As an example, we consider a simple spherically symmetric static configuration consisting of many quanta and construct a self-consistent non-perturbative solution for $\hbar$ in which the entropy exactly follows the area law for many local degrees of freedom of any kind. This can be a candidate for black holes in quantum theory. It represents a compact dense configuration with near-Planckian curvatures, and the interior typically behaves like a local thermal state due to particle creation. Here, the information content is stored in the interior bulk, and the self-gravity plays an essential role in changing the entropy from the volume law to the area law. We finally discuss implications to black holes in quantum gravity and a speculative view of entropy as a gravitational charge.

20 pages + 3 figures. Version published in Nuclear Physics B. (With keeping the main results, change the title and abstract; modified and expanded Introduction and Conclusion including relations with other works and several new discussions; added references.)

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (34)*注記

もっと見る

関連プロジェクト

もっと見る

問題の指摘

ページトップへ