この論文をさがす
説明
<jats:title>Abstract</jats:title><jats:p>We introduce the coupled Ricci–Calabi functional and the coupled H-functional which measure how far a Kähler metric is from a coupled Kähler–Einstein metric in the sense of Hultgren–Witt Nyström. We first give corresponding moment weight type inequalities which estimate each functional in terms of algebraic invariants. Secondly, we give corresponding Hessian formulas for these functionals at each critical point, which have an application to a Matsushima type obstruction theorem for the existence of a coupled Kähler–Einstein metric.</jats:p>
収録刊行物
-
- Annals of Global Analysis and Geometry
-
Annals of Global Analysis and Geometry 64 (2), 2023-07-10
Springer Science and Business Media LLC
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1360302865729516800
-
- ISSN
- 15729060
- 0232704X
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN