この論文をさがす
説明
Let $X$ be a complex smooth projective variety such that the exterior power of the tangent bundle $\bigwedge^{r} T_X$ is nef for some $1\leq r<\dim X$. We prove that, up to an étale cover, $X$ is a Fano fiber space over an Abelian variety. This gives generalizations of the structure theorem of varieties with nef tangent bundle by Demailly, Peternell and Schneider and that of varieties with nef $\bigwedge^{2} T_X$ by the author. Our result also gives an answer to a question raised by Li, Ou and Yang for varieties with strictly nef $\bigwedge^{r} T_X$ when $r < \dim X$.
6 pages
収録刊行物
-
- Proceedings of the Japan Academy, Series A, Mathematical Sciences
-
Proceedings of the Japan Academy, Series A, Mathematical Sciences 99 (10), 2023-12-11
Project Euclid
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1360865815504152704
-
- ISSN
- 03862194
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN
- OpenAIRE