$\alpha$-induction for bi-unitary connections

Search this article

Description

<jats:p> The tensor functor called <jats:inline-formula> <jats:tex-math>\alpha</jats:tex-math> </jats:inline-formula> -induction produces a new unitary fusion category from a Frobenius algebra object, or a <jats:inline-formula> <jats:tex-math>Q</jats:tex-math> </jats:inline-formula> -system, in a braided unitary fusion category. In the operator algebraic language, it gives extensions of endomorphism of <jats:inline-formula> <jats:tex-math>N</jats:tex-math> </jats:inline-formula> to <jats:inline-formula> <jats:tex-math>M</jats:tex-math> </jats:inline-formula> arising from a subfactor <jats:inline-formula> <jats:tex-math>N\subset M</jats:tex-math> </jats:inline-formula> of finite index and finite depth, which gives a braided fusion category of endomorphisms of <jats:inline-formula> <jats:tex-math>N</jats:tex-math> </jats:inline-formula> . It is also understood in terms of Ocneanu’s graphical calculus. We study this <jats:inline-formula> <jats:tex-math>\alpha</jats:tex-math> </jats:inline-formula> -induction for bi-unitary connections, which provides a characterization of finite-dimensional nondegenerate commuting squares, and present certain <jats:inline-formula> <jats:tex-math>4</jats:tex-math> </jats:inline-formula> -tensors appearing in recent studies of <jats:inline-formula> <jats:tex-math>2</jats:tex-math> </jats:inline-formula> -dimensional topological order. We show that the resulting <jats:inline-formula> <jats:tex-math>\alpha</jats:tex-math> </jats:inline-formula> -induced bi-unitary connections are flat if we start with a commutative Frobenius algebra, or a local <jats:inline-formula> <jats:tex-math>Q</jats:tex-math> </jats:inline-formula> -system. Examples related to chiral conformal field theory and the Dynkin diagrams are presented. </jats:p>

Journal

  • Quantum Topology

    Quantum Topology 15 (3), 503-536, 2024-03-31

    European Mathematical Society - EMS - Publishing House GmbH

Related Articles

See more

Related Projects

See more

Details 詳細情報について

  • CRID
    1360584339760066432
  • DOI
    10.4171/qt/209
  • ISSN
    1664073X
    1663487X
  • Article Type
    journal article
  • Data Source
    • Crossref
    • KAKEN
    • OpenAIRE

Report a problem

Back to top