- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
$\alpha$-induction for bi-unitary connections
-
- Yasuyuki Kawahigashi
- The University of Tokyo, Tokyo, Japan
Search this article
Description
<jats:p> The tensor functor called <jats:inline-formula> <jats:tex-math>\alpha</jats:tex-math> </jats:inline-formula> -induction produces a new unitary fusion category from a Frobenius algebra object, or a <jats:inline-formula> <jats:tex-math>Q</jats:tex-math> </jats:inline-formula> -system, in a braided unitary fusion category. In the operator algebraic language, it gives extensions of endomorphism of <jats:inline-formula> <jats:tex-math>N</jats:tex-math> </jats:inline-formula> to <jats:inline-formula> <jats:tex-math>M</jats:tex-math> </jats:inline-formula> arising from a subfactor <jats:inline-formula> <jats:tex-math>N\subset M</jats:tex-math> </jats:inline-formula> of finite index and finite depth, which gives a braided fusion category of endomorphisms of <jats:inline-formula> <jats:tex-math>N</jats:tex-math> </jats:inline-formula> . It is also understood in terms of Ocneanu’s graphical calculus. We study this <jats:inline-formula> <jats:tex-math>\alpha</jats:tex-math> </jats:inline-formula> -induction for bi-unitary connections, which provides a characterization of finite-dimensional nondegenerate commuting squares, and present certain <jats:inline-formula> <jats:tex-math>4</jats:tex-math> </jats:inline-formula> -tensors appearing in recent studies of <jats:inline-formula> <jats:tex-math>2</jats:tex-math> </jats:inline-formula> -dimensional topological order. We show that the resulting <jats:inline-formula> <jats:tex-math>\alpha</jats:tex-math> </jats:inline-formula> -induced bi-unitary connections are flat if we start with a commutative Frobenius algebra, or a local <jats:inline-formula> <jats:tex-math>Q</jats:tex-math> </jats:inline-formula> -system. Examples related to chiral conformal field theory and the Dynkin diagrams are presented. </jats:p>
Journal
-
- Quantum Topology
-
Quantum Topology 15 (3), 503-536, 2024-03-31
European Mathematical Society - EMS - Publishing House GmbH
Related Articles
See more- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1360584339760066432
-
- DOI
- 10.4171/qt/209
-
- ISSN
- 1664073X
- 1663487X
-
- Article Type
- journal article
-
- Data Source
-
- Crossref
- KAKEN
- OpenAIRE