Innovative research of geometric topology and singularities of differentiable mappings
About this project
- Japan Grant Number
- JP17H06128
- Funding Program
- Grants-in-Aid for Scientific Research
- Funding organization
- Japan Society for the Promotion of Science
- Project/Area Number
- 17H06128
- Research Category
- Grant-in-Aid for Scientific Research (S)
- Allocation Type
-
- Single-year Grants
- Review Section / Research Field
-
- Science and Engineering > Mathematics and Physics > Mathematics > Geometry
- Research Institution
-
- Kyushu University
- Project Period (FY)
- 2017-05-31 〜 2022-03-31
- Project Status
- Completed
- Budget Amount*help
- 81,640,000 Yen (Direct Cost: 62,800,000 Yen Indirect Cost: 18,840,000 Yen)
Research Abstract
We established a global and concrete simplification method for differentiable maps using geometric topology and discovered that 4-dimensional manifolds always have good structures. We also formulated for the first time the cobordism of maps of manifolds with boundary, which is significant for creating a new research area. Furthermore, we found that nonsingular fibers and singular sets are sometimes not linked, and our application of this discovery to the theory of submersions is a remarkable example of the versatility of the singularity theory. We have also reformulated the theory of dual flat structures, which is important in information geometry, so that it can be applied to singular models as well, and has promoted the construction of next-generation catastrophe theory for applications in various scientific fields.
Keywords
- 特異点
- 多様体
- 幾何的トポロジー
- 特異ファイバー
- Vassiliev型不変量
- Lefschetz束
- 次世代カタストロフィー理論
- データ可視化
- round fold map
- Morse関数
- モノドロミー
- 次世代カタストロフ理論
- 情報幾何学
- 双対平坦構造
- 波面
- パーシステントホモロジー
- 微分位相幾何
- 低次元トポロジー
- 産業数学
- Reeb空間
- Reebグラフ
- 臨界値
- LSカテゴリー
- 位相的複雑度
- スペシャル・ジェネリック写像
- コホモロジー環
- ファイバー
- 安定写像
- 絡み数
- 符号数
- 相対的特性類
- 沈めこみ
- 非特異ファイバー
- 特異点集合
- 特異点論
- 特異Lefschetz束
- trisection
- shadow
- はめ込まれた曲面結び目
- 位相的複雑さ
- 特異Lefschetz構造
- 多目的最適化
- 多様体対
- 不変量
Details 詳細情報について
-
- CRID
- 1040000781959327744
-
- Text Lang
- ja
-
- Data Source
-
- KAKEN
- IRDB