Almost Hermitian geometry and the related topics
-
- SEKIGAWA Kouei
- Principal Investigator
- 新潟大学
-
- OGURO Takashi
- Co-Investigator
- 東京電機大学
-
- YAMADA Akira
- Co-Investigator
- 長岡工業高等専門学校
About This Project
- Japan Grant Number
- JP22540071 (JGN)
- Funding Program
- Grants-in-Aid for Scientific Research
- Funding Organization
- Japan Society for the Promotion of Science
Kakenhi Information
- Project/Area Number
- 22540071
- Research Category
- Grant-in-Aid for Scientific Research (C)
- Allocation Type
-
- Single-year Grants
- Review Section / Research Field
-
- Science and Engineering > Mathematics and Physics > Mathematics > Geometry
- Research Institution
-
- Niigata University
- Project Period (FY)
- 2010 〜 2012
- Project Status
- Completed
- Budget Amount*help
- 3,120,000 Yen (Direct Cost: 2,400,000 Yen Indirect Cost: 720,000 Yen)
Research Abstract
An almost complex manifold quipped with a compatible Riemannian metric is called an almost Hermitian manifold. In our research project, we obtained several interesting results on the topics concerning the integrability of almost Hemitian manifolds and also on various variational problems for the Koda functional which is regarded as an extension of the Einstein-Hilbert functional to almost Hermitian setting. Further,we obtained some results on the unit tangent sphere bundles such that the characteristic vector fields are harmonic vector fields. We also discussed some problems arised in the course of our research activity and could obtain unexpected results.
Keywords
- 概エルミート多様体
- ゴールドバーグの予想
- チャーン・ヴェイユ理論
- ガウス・ボンネ・チャーンの定理
- アインシュタイン・ヒルベルト汎関数
- 単位接球面束
- 普遍曲率恒等式
- ボッホナー曲率テンンソル
- 概エルミート構造
- Einstein 計量
- Goldberg 予想
- 佐々木多様体
- Chern-Weil 理論
- 特性類
- Gauss-Bonnet の定理
- 臨界概エルミート構造
- Goldberg予想
- Gauss-Bonnet定理
- Einstein計量
- 曲率恒等式
- Chern-Weil理論
- 接触計量多様体
- TV-Bochner曲率テンソル
- TV-Bochner平坦概エルミート多様体
- H-接触計量多様体
- 2-stein多様体
- 指数定理
Details 詳細情報について
-
- CRID
- 1040282257095977472
-
- Text Lang
- ja
-
- Data Source
-
- KAKEN