- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
High Accuracy Evaluation of Concrete Delamination Risk by Deep Learning of Hammering Sounds
-
- Sonoda Yoshimi
- Principal Investigator
- 九州大学
-
- 玉井 宏樹
- Co-Investigator
- 九州大学
-
- 別府 万寿博
- Co-Investigator
- 防衛大学校(総合教育学群、人文社会科学群、応用科学群、電気情報学群及びシステム工学群)
About This Project
- Japan Grant Number
- JP20H02234 (JGN)
- Funding Program
- Grants-in-Aid for Scientific Research
- Funding Organization
- Japan Society for the Promotion of Science
Kakenhi Information
- Project/Area Number
- 20H02234
- Research Category
- Grant-in-Aid for Scientific Research (B)
- Allocation Type
-
- Single-year Grants
- Review Section / Research Field
-
- Basic Section 22020:Structure engineering and earthquake engineering-related
- Research Institution
-
- Kyushu University
- Project Period (FY)
- 2020-04-01 〜 2023-03-31
- Project Status
- Completed
- Budget Amount*help
- 17,680,000 Yen (Direct Cost: 13,600,000 Yen Indirect Cost: 4,080,000 Yen)
Research Abstract
本研究は,コンクリートの剥落事故を防ぐために,劣化損傷を模擬した供試体を製作し,軽度な繰り返し衝撃試験を行いながら,損傷進展による非破壊試験(打音・赤外線画像)データの変化を深層学習させることで,RC構造物のコンクリート剥落の予兆を捉える手法を確立するものである.
Keywords
Details 詳細情報について
-
- CRID
- 1040285300695465984
-
- Text Lang
- ja
-
- Data Source
-
- KAKEN