金属材料の変形や破壊を詳細に理解するためには格子欠陥の挙動を捉える必要があり,本研究ではこのための技術開発およびその実施を行う.高速で格子欠陥の挙動を捉えるためには,高速で電子顕微鏡観察を行う必要があるが,高速で撮影を行うと像にノイズが多く含まれてしまう.そこで,機械学習を用いて像の改善を行い,これまで未解明な点が多かった変形中に変化する格子欠陥の詳細を可視化することを試みる.