- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Direct observation of electrically induced Pauli paramagnetism in single-layer graphene using ESR spectroscopy
Description
<jats:title>Abstract</jats:title><jats:p>Graphene has been actively investigated as an electronic material owing to many excellent physical properties, such as high charge mobility and quantum Hall effect, due to the characteristics of a linear band structure and an ideal two-dimensional electron system. However, the correlations between the transport characteristics and the spin states of charge carriers or atomic vacancies in graphene have not yet been fully elucidated. Here, we show the spin states of single-layer graphene to clarify the correlations using electron spin resonance (ESR) spectroscopy as a function of accumulated charge density using transistor structures. Two different electrically induced ESR signals were observed. One is originated from a Fermi-degenerate two-dimensional electron system, demonstrating the first observation of electrically induced Pauli paramagnetism from a microscopic viewpoint, showing a clear contrast to no ESR observation of Pauli paramagnetism in carbon nanotubes (CNTs) due to a one-dimensional electron system. The other is originated from the electrically induced ambipolar spin vanishments due to atomic vacancies in graphene, showing a universal phenomenon for carbon materials including CNTs. The degenerate electron system with the ambipolar spin vanishments would contribute to high charge mobility due to the decrease in spin scatterings in graphene.</jats:p>
Journal
-
- Scientific Reports
-
Scientific Reports 6 34966-, 2016-10
Nature Publishing Group
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1050001202634104832
-
- ISSN
- 20452322
-
- HANDLE
- 2241/00144337
-
- PubMed
- 27731338
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- IRDB
- Crossref
- KAKEN
- OpenAIRE