Estimates of fractional maximal functions in a quasi-metric space
この論文をさがす
説明
application/pdf
紀要論文
Let M_α be the fractional maximal operator in a quasi-metric space X. We will prove that M_α is bounded from the Choquet space L^p (H^η_∞) with respect to the η-Hausdorff capacity H^η_∞ to the Choquet space L^<q, p> (H^δ_∞) of Lorentz type with respect to the δ-Hausdorff capacity for some δ. To prove it, we use the Choquet integrals with respect to Hausdorff capacities and the dyadic balls introduced by E. Sawyer and R.L. Wheeden.
収録刊行物
-
- お茶の水女子大學自然科學報告
-
お茶の水女子大學自然科學報告 56 (2), 21-31, 2006-01
お茶の水女子大学
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050001202947562880
-
- NII論文ID
- 110006559626
-
- NII書誌ID
- AN00033958
-
- ISSN
- 00298190
-
- HANDLE
- 10083/2394
-
- NDL書誌ID
- 7954584
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- NDLサーチ
- CiNii Articles