Estimates of fractional maximal functions in a quasi-metric space

この論文をさがす

説明

application/pdf

紀要論文

Let M_α be the fractional maximal operator in a quasi-metric space X. We will prove that M_α is bounded from the Choquet space L^p (H^η_∞) with respect to the η-Hausdorff capacity H^η_∞ to the Choquet space L^<q, p> (H^δ_∞) of Lorentz type with respect to the δ-Hausdorff capacity for some δ. To prove it, we use the Choquet integrals with respect to Hausdorff capacities and the dyadic balls introduced by E. Sawyer and R.L. Wheeden.

収録刊行物

詳細情報 詳細情報について

問題の指摘

ページトップへ