Pell Equation. IV. Fastest algorithm for solving the Pell equation
書誌事項
- タイトル別名
-
- Pell equation 4 Fastest algorithm for solving the Pell equation
この論文をさがす
説明
application/pdf
紀要論文
The fastest algorithm for solving the Pell equations, x^2-Dy^2=1 (called Pell-1) and x^2-Dy^2=-1 (Llep-1) , are demonstrated with two typical examples. The essence of the algorithm is i) to obtain the periodic continued fraction expression for the square root of D, ii) to prepare four caterpillar graphs by using the terms derived above, and iii) to set a 3×3(for Pell) or 2×2(for Llep) determinant whose elements are the topological indices (Z’s) of those graphs, and iv) to calculate the determinant. The dramatic shortening of the procedure comes from the finding that the continuant is equivalent to the topological index of the caterpillar graph directly derived from the continued fraction expansion of the square root of D.
収録刊行物
-
- お茶の水女子大學自然科學報告
-
お茶の水女子大學自然科學報告 58 (1), 29-37, 2007-09
お茶の水女子大学
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050001202948204416
-
- NII論文ID
- 110007150522
-
- NII書誌ID
- AN00033958
-
- ISSN
- 00298190
-
- HANDLE
- 10083/35235
-
- NDL書誌ID
- 9519793
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- NDLサーチ
- CiNii Articles