A Product-type Krylov Subspace Method Based on Conjugate Residual Method for Nonsymmetric Coefficient Matrices

Bibliographic Information

Other Title
  • 非対称行列用共役残差法に基づく積型反復解法
  • ヒタイショウ ギョウレツヨウ キョウヤク ザンサホウ ニ モトズク セキガタ ハンプク カイホウ

Search this article

Description

我々は 非対称行列用共役残差法の残差多項式の係数の計算方法を積型反復解法に取り入れることによって新たな積型反復解法を提案する.すなわち,残差,近似解を生成するための漸化式は従来の積型反復解法と同一のものを用い,従来の双共役勾配法の残差多項式の係数の代わりに非対称行列用共役残差法の残差多項式の係数を用いてアルゴリズムを更新する.数値実験では,非対称行列用CR法に基づく積型反復解法が従来の積型反復解法よりも有効であることを示す.

We propose a product-type Krylov subspace method based on the conjugate residual (CR) method for nonsymmetric coefficient matrices. The recurrence formulas for updating an approximation and a residual vector are the same as those of the original product-type Krylov subspace method, while the recurrence coefficients alpha_k and beta_k are determined so as to compute the coefficients of the residual polynomial of CR for nonsymmetric coefficient matrices. Numerical experiments show that our proposed product-type Krylov subspace method is more effective than the original.

Journal

Citations (8)*help

See more

References(19)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top