Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review

HANDLE Open Access

Description

Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots.

Journal

Related Projects

See more

Details 詳細情報について

  • CRID
    1050001338207771136
  • NII Article ID
    120006534624
  • ISSN
    16625218
  • HANDLE
    2433/234974
  • Text Lang
    en
  • Article Type
    journal article
  • Data Source
    • IRDB
    • CiNii Articles
    • KAKEN

Report a problem

Back to top