Adelically summable normalized weights and adelic equidistribution of effective divisors having small diagonals and small heights on the Berkovich projective lines (Algebraic Number Theory and Related Topics 2014)
-
- 奥山, 裕介
- Division of Mathematics, Kyoto Institute of Technology
この論文をさがす
説明
We introduce the notion of an adelically summable normalized weight g, which is a family of normalized weights on the Berkovich projective lines satisfying a summability condition. We then establish an adelic equidistribution of effective k-divisors on the projective line over the separable closure ks in k of a product formula field k having small g-heights and small diagonals. This equidistribution result generalizes Ye's for the Galois conjugacy classes of algebraic numbers with respect to quasi-adelic measures.
収録刊行物
-
- 数理解析研究所講究録別冊
-
数理解析研究所講究録別冊 B64 55-66, 2017-05
Research Institute for Mathematical Sciences, Kyoto University
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1050001338460546304
-
- NII論文ID
- 120006715387
-
- NII書誌ID
- AA12196120
-
- ISSN
- 18816193
-
- HANDLE
- 2433/243660
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- CiNii Articles