Abstract
Organ-to-organ communication is indispensable for higher organisms to maintain homeostasis over their entire life. Recent findings have uncovered that plants, like animals, mediate organ-to-organ communication by long-distance signaling through the vascular system. In particular, xylem-mobile secreted peptides have attracted much attention as root-to-shoot long-distance signaling molecules in response to fluctuating environmental nutrient status. Several leguminous CLE peptides induced by rhizobial inoculation act as ‘satiety’ signals in long-distance negative feedback of nodule formation. By contrast, Arabidopsis CEP family peptides induced by local nitrogen (N)-starvation behave as systemic ‘hunger’ signals to promote compensatory N acquisition in other parts of the roots. Xylem sap peptidomics also implies the presence of still uncharacterized long-distance signaling peptides. This review highlights the current understanding of and new insights into the mechanisms and functions of root-to-shoot long-distance peptide signaling during environmental responses.
Journal
-
- Current Opinion in Plant Biology
-
Current Opinion in Plant Biology 34 35-40, 2016-12
Elsevier
- Tweet
Details
-
- CRID
- 1050001338805741312
-
- NII Article ID
- 120006024321
-
- HANDLE
- 2237/25959
-
- ISSN
- 13695266
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- IRDB
- CiNii Articles