Adsorption and desorption of deuterium on partially oxidized Si(100) surfaces

Search this article

Abstract

Adsorption and desorption of deuterium are studied on the partially oxidized Si(100) surfaces. The partial oxygen coverage causes a decrease in the initial adsorption probability of D atoms. The observed D2 temperature-programmed-desorption (TPD) spectra comprise of multiple components depending on the oxygen coverage (θO). For θO=0.1ML the D2 TPD spectrum is deconvoluted into four components, each of which has a peak in the temperature region higher than the D2 TPD peaking at 780 K on the oxygen free surface. The highest TPD component with a peak around 1040 K is attributed to D adatoms on Si dimers backbonded by an oxygen atom. The other components are attributed to D adatoms on the nearest or second nearest sites of the O-backbonded Si dimers. D adatoms on the partially oxidized Si surfaces are abstracted by gaseous H atoms along two different abstraction pathways: one is the pathway along direct abstraction (ABS) to form HD molecules and the other is the pathway along indirect abstraction via collision-induced-desorption (CID) of D adatoms to form D2 molecules. The ABS pathway is less seriously affected by oxygen adatoms. On the other hand, the CID pathway receives a strong influence of oxygen adatoms since the range of surface temperature effective for CID is found to considerably shift to higher surface temperatures with increasing θO. Gradual substitution of D adatoms with H atoms during H exposure results in HD desorption along the CID pathway in addition to the ABS one. By employing a modulated beam technique the CID-related HD desorption is directly distinguished from the ABS-related one.

Journal

Details 詳細情報について

Report a problem

Back to top