[Updated on Apr. 18] Integration of CiNii Articles into CiNii Research

Statistical evaluation of Q factors of fabricated photonic crystal nanocavities designed by using a deep neural network

  • Nakadai, Masahiro
    Department of Electronic Science and Engineering, Kyoto University
  • Tanaka, Kengo
    Department of Electronic Science and Engineering, Kyoto University
  • Asano, Takashi
    Department of Electronic Science and Engineering, Kyoto University
  • Takahashi, Yasushi
    Department of Physics and Electronics, Osaka Prefecture University
  • Noda, Susumu
    Department of Electronic Science and Engineering, Kyoto University・Photonics and Electronics Science and Engineering Center, Kyoto University

Abstract

Photonic crystal (PC) nanocavities with ultra-high quality (Q) factors and small modal volumes enable advanced photon manipulations, such as photon trapping. In order to improve the Q factors of such nanocavities, we have recently proposed a cavity design method based on machine learning. Here, we experimentally compare nanocavities designed by using a deep neural network with those designed by the manual approach that enabled a record value. Thirty air-bridge-type two-dimensional PC nanocavities are fabricated on silicon-on-insulator substrates, and their photon lifetimes are measured. The realized median Q factor increases by about one million by adopting the machine-learning-based design approach.

Journal

Citations (2)*help

See more

References(30)*help

See more

Related Articles

See more

Related Data

See more

Related Books

See more

Related Dissertations

See more

Related Projects

See more

Related Products

See more

Details

Report a problem

Back to top