Entanglement entropy for 2D gauge theories with matters
説明
We investigate the entanglement entropy in 1+1-dimensional SU(N) gauge theories with various matter fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection sector distribution, where sectors are labeled by irreducible representations of boundary penetrating fluxes, (2) logarithm of the dimensions of their representations, which is associated with “color entanglement, ” and (3) EPR Bell pairs, which give “genuine” entanglement. We explicitly show that entanglement entropies (1) and (2) above indeed appear for various multiple “meson” states in gauge theories with matter fields. Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter K is roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the continuum limit can be understood from the lattice ground state obtained in the HPE.
収録刊行物
-
- Physical Review D
-
Physical Review D 96 (4), 2017-08-15
American Physical Society (APS)
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050003824752703360
-
- NII論文ID
- 120006826694
-
- ISSN
- 24700010
-
- HANDLE
- 2433/250296
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- CiNii Articles