A Compactness Theorem for Variational Inequalities of Parabolic Type (Theory of Evolution Equation and Mathematical Analysis of Nonlinear Phenomena)

  • Gokieli, Maria
    Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
  • Kenmochi, Nobuyuki
    Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw
  • Niezgódka, Marek
    Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

Bibliographic Information

Other Title
  • A Compactness Theorem for Variational Inequalities of Parabolic Type

Search this article

Description

This paper is concerned with the weak solvability for fully nonlinear parabolic variational inequalities with time dependent convex constraints. As a possible approach to such problems, there is for instance the fixed point method of the Schauder type with appropriate compactness theorems. However, there has not been prepared any compactness theorem up to date that enables us the application of the fixed point method to variational inequalities of prabolic type. We have to start establishing a new compactness theorem for a wide class of prabolic variational inequalities.

Journal

  • RIMS Kokyuroku

    RIMS Kokyuroku 2090 132-143, 2018-09

    京都大学数理解析研究所

Details 詳細情報について

Report a problem

Back to top