On the digits in the base-$b$ expansion of smooth numbers (Analytic Number Theory and Related Areas)
-
- Bugeaud, Yann
- Institut de Recherche Mathématique Avancée, U.M.R. 7501, Université de Strasbourg et C.N.R.S.
-
- Kaneko, Hajime
- Institute of Mathematics, University of Tsukuba・Research Core for Mathematical Sciences, University of Tsukuba
Bibliographic Information
- Other Title
-
- On the digits in the base-b expansion of smooth numbers
Search this article
Description
Erdös [4] conjectured that, for any integer mgeq 9, the digit 2 appears at least once in the ternary expansion of 2^{m}. More precisely, Dupuy and Weirich [3] conjectured that. for any sufficiently large m, the digits 0, 1, and 2 appear "uniformly" in the ternary expansion of 2^{m}. This is still open. Stewart [10] obtained a lower bound for the number of nonzero digits in the ternary expansion of 2^{m}, thus giving (very) partial results of "uniformity". In this report, we investigate the number of nonzero digits in the base-b expansion of more general smooth numbers and introduce the main results established in [2].
Journal
-
- RIMS Kokyuroku
-
RIMS Kokyuroku 2092 97-103, 2018-11
京都大学数理解析研究所
- Tweet
Details 詳細情報について
-
- CRID
- 1050003824810716288
-
- NII Article ID
- 120006861272
-
- NII Book ID
- AN00061013
-
- ISSN
- 18802818
-
- HANDLE
- 2433/251655
-
- NDL BIB ID
- 029624009
-
- Text Lang
- en
-
- Article Type
- departmental bulletin paper
-
- Data Source
-
- IRDB
- NDL Search
- CiNii Articles