The CCR4–NOT complex maintains liver homeostasis through mRNA deadenylation

この論文をさがす

説明

The biological significance of deadenylation in global gene expression is not fully understood. Here, we show that the CCR4-NOT deadenylase complex maintains expression of mRNAs, such as those encoding transcription factors, cell cycle regulators, DNA damage response-related proteins, and metabolic enzymes, at appropriate levels in the liver. Liver-specific disruption of Cnot1, encoding a scaffold subunit of the CCR4-NOT complex, leads to increased levels of mRNAs for transcription factors, cell cycle regulators, and DNA damage response-related proteins because of reduced deadenylation and stabilization of these mRNAs. CNOT1 suppression also results in an increase of immature, unspliced mRNAs (pre-mRNAs) for apoptosis-related and inflammation-related genes and promotes RNA polymerase II loading on their promoter regions. In contrast, mRNAs encoding metabolic enzymes become less abundant, concomitant with decreased levels of these pre-mRNAs. Lethal hepatitis develops concomitantly with abnormal mRNA expression. Mechanistically, the CCR4-NOT complex targets and destabilizes mRNAs mainly through its association with Argonaute 2 (AGO2) and butyrate response factor 1 (BRF1) in the liver. Therefore, the CCR4-NOT complex contributes to liver homeostasis by modulating the liver transcriptome through mRNA deadenylation.

source:https://creativecommons.org/licenses/by/4.0/

source:https://www.life-science-alliance.org/content/3/5/e201900494

収録刊行物

被引用文献 (8)*注記

もっと見る

参考文献 (82)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ