この論文をさがす
説明
In this note, certain congruences for Gauss sums over the finite field GF (pf) are studied. Especially, in the case of f = 1, two deductions for the congruence are given as follows: Let p be any odd prime and ω be the Teichmüller character of conductor p. Let ζp be a fixed primitive p-th root of unity. Then for the Gauss sum g(ωr)=∑xmodp ωr(x)ζxp with respect to any Dirichlet character x=ωr with 1≤r≤p-2, two elementary deductions for a congruence…are given by making use of the Stickelberger theorem and by making use of the Kummer congruences together with the Artin-Hasse exponential series, where p means the prime ideal in Qp (ζp) and ϖ denotes a prime element in Qp (ζp) satisfying…
収録刊行物
-
- 長崎大学教育学部自然科学研究報告
-
長崎大学教育学部自然科学研究報告 55 1-8, 1996-05-31
長崎大学教育学部
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050005822298489472
-
- NII論文ID
- 110000293964
-
- NII書誌ID
- AN00178280
-
- ISSN
- 0386443X
-
- HANDLE
- 10069/32150
-
- NDL書誌ID
- 4002233
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- NDL
- CiNii Articles