The Laplacian on some self-conformal fractals and Weyl's asymptotics for its eigenvalues: A survey of the ergodic-theoretic aspects (Research on the Theory of Random Dynamical Systems and Fractal Geometry)
-
- 梶野, 直孝
- 神戸大学
この論文をさがす
説明
This short survey is aimed at sketching the ergodic-theoretic aspects of the author's recent studies on Weyl's eigenvalue asymptotics for a "geometrically canonical" Laplacian defined by the author on some self-conformal circle packing fractals including the classical Apollonian gasket. The main result being surveyed is obtained by applying Kesten's renewal theorem [Ann. Probab. 2 (1974), 355- 386, Theorem 2] for functionals of Markov chains on general state spaces and provides an alternative probabilistic proof of the result by Oh and Shah [Invent. Math. 187 (2012), 1-35, Corollary 1.8] on the asymptotic distribution of the circles in the Apollonian gasket.
収録刊行物
-
- 数理解析研究所講究録
-
数理解析研究所講究録 2176 111-119, 2021-04
京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050007846268311680
-
- NII書誌ID
- AN00061013
-
- HANDLE
- 2433/264790
-
- ISSN
- 18802818
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB