- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Frobenius splitting of Schubert varieties of semi-infinite flag manifolds
Description
We exhibit basic algebro-geometric results on the formal model of semi-infinite flag varieties and its Schubert varieties over an algebraically closed field K of characteristic ≠2 from scratch. We show that the formal model of a semi-infinite flag variety admits a unique nice (ind-)scheme structure, its projective coordinate ring has a Z-model and it admits a Frobenius splitting compatible with the boundaries and opposite cells in positive characteristic. This establishes the normality of the Schubert varieties of the quasi-map space with a fixed degree (instead of their limits proved in [K, Math. Ann. 371 no.2 (2018)]) when charK=0 or ≫0, and the higher-cohomology vanishing of their nef line bundles in arbitrary characteristic ≠2. Some particular cases of these results play crucial roles in our proof [47] of a conjecture by Lam, Li, Mihalcea and Shimozono [60] that describes an isomorphism between affine and quantum K-groups of a flag manifold.
Journal
-
- Forum of Mathematics, Pi
-
Forum of Mathematics, Pi 9 2021
Cambridge University Press (CUP)
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1050012313331738496
-
- ISSN
- 20505086
-
- HANDLE
- 2433/276668
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- IRDB
- Crossref
- KAKEN
- OpenAIRE