- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Dependence of Generation of Whistler Mode Chorus Emissions on the Temperature Anisotropy and Density of Energetic Electrons in the Earth's Inner Magnetosphere
Search this article
Description
We carry out a series of self-consistent electron hybrid code simulations for the dependence of chorus generation process on the temperature anisotropy and density of energetic electrons in the Earth's inner magnetosphere. We use the same magnetic field gradient in the simulation system and different temperature anisotropy AT for the initial distribution of energetic electrons at the magnetic equator. We conduct 6 sets of simulations for different AT from 4 to 9, changing the initial number density N-h of energetic electrons at the equator in each set of simulations. By analyzing the spectra obtained in the simulation results, we identify chorus elements with rising tones in the results for higher Nh but no distinct chorus in smaller Nh. We compare the simulation results with estimations of the threshold and optimum amplitude proposed by the nonlinear wave growth theory. We find that the chorus generation processes reproduced in the simulation results are consistently explained by the theoretical estimates. We also compare the simulation results with linear growth rates for all simulation runs. We find clear disagreement between the spectral characteristics of reproduced chorus and the predictions by the linear theory. The present study clarifies that the spectra of chorus are essentially different from those predicted by the linear theory and are determined fully by nonlinear processes of wave-particle interactions in the chorus generation region.
Journal
-
- Journal of Geophysical Research: Space Physics
-
Journal of Geophysical Research: Space Physics 123 (2), 1165-1177, 2018-02
American Geophysical Union (AGU)
- Tweet
Details 詳細情報について
-
- CRID
- 1050012570393777152
-
- NII Article ID
- 120006482605
-
- ISSN
- 21699402
- 21699380
-
- HANDLE
- 20.500.14094/90004952
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- IRDB
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE