A Variation of Takagi's Proof for Quadratic Reciprocity Laws for Jacobi Symbols
この論文をさがす
説明
It is well known that Gauss has found the first complete proof of quadratic reciprocity laws in [2] (1801) and many different proofs for quadratic reciprocity laws of Legendre symbols have been published after then (see for example Appendix B of Lemmermeyer’s text [11]). In this paper, we shall write down a visual proof of quadratic reciprocity laws for Jacobi symbols depending on Schering’s generalization of Gauss’s lemma.
収録刊行物
-
- Journal of mathematics, the University of Tokushima
-
Journal of mathematics, the University of Tokushima 43 9-23, 2009-12
徳島大学
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050020697878130944
-
- NII論文ID
- 110007492238
-
- NII書誌ID
- AA11595324
-
- ISSN
- 13467387
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- IRDB
- CiNii Articles