Minimal polynomials and characteristic polynomials over rings
この論文をさがす
説明
type:text
Let R be a commutative ring with 1, and M be a free module of a finite rank over R. is the endomorphism ring of M over R, s is an element in and the matrix of s diagonalizable. Our purpose is to investigate the relationship between the characteristic polynomial of s and the minimal polynomial of s. If R is an integral domain, then we shall show that is uniquely determined as a monic polynomial dividing Also, the difference between the two sets of zeros of and respectively, is only the multiplicity of their roots. If R is not an integral domain, then we shall construct s such that is not necessarily monic nor divides
identifier:JOS-09725555-2001
収録刊行物
-
- JP journal of algebra, number theory and applications
-
JP journal of algebra, number theory and applications 20 (1), 49-60, 2011-03
Pushpa Publishing House
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1050282677766391808
-
- NII論文ID
- 120005518474
-
- NII書誌ID
- AA12017469
-
- ISSN
- 09725555
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- IRDB
- CiNii Articles