A property of spectral radius of the residual matrix associated with regular splitting in iterative method (A. NATURAL SCIENCE)
Bibliographic Information
- Other Title
-
- 正則分離に随伴する反復行列スペクトル半径の性質〔英文〕
- セイソク ブンリ ニ ズイハンスル ハンプク ギョウレツ スペクトル ハンケイ
- 正則分離に随伴する反復行列スペクトル半径の性質(A. 理学)
Search this article
Description
Let A be a non-singular real matrix of order n, where the inverse of A is strictly positive. And further, suppose that A permits regular splittings in the sense of Varga. For such a matrix A, it will be proved that for any given regular splitting A=A_1-A_2,A_2≠0,the spectral radius of the corresponding residual matrix H=A_1^<-1>A_2 is always a simple eigen-value, whether H is reducible or not.
Journal
-
- The scientific reports of the Kyoto Prefectural University. Natural science and living science
-
The scientific reports of the Kyoto Prefectural University. Natural science and living science 25 1-5, 1974-10-31
京都 : 京都府立大学学術報告委員会
- Tweet
Details 詳細情報について
-
- CRID
- 1050282812603641856
-
- NII Article ID
- 110000057999
-
- NII Book ID
- AN00062300
-
- NDL BIB ID
- 1576649
-
- ISSN
- 0075739X
-
- Text Lang
- en
-
- Article Type
- departmental bulletin paper
-
- Data Source
-
- IRDB
- NDL Search
- CiNii Articles