Effect of endurance training on excessive CO2 expiration due to lactate production in exercise

DOI 機関リポジトリ 機関リポジトリ (HANDLE) PDF Web Site ほか2件をすべて表示 一部だけ表示 被引用文献4件

この論文をさがす

説明

We attempted to determine the change in total excess volume of CO2 Output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19–22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for C02 excess per unit of body mass per unit of blood lactate accumulation (Ala−) in exercise (CO2 excess·mass−1·Δla−), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml·kg−1·l−1·mmol−1, 97.8m, 4.4 ml·kg−1· min−1 and 7.3 ml·kg−1·min−1, respectively. The percentage change in CO2 excess·mass−1·Δla− (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess·mass−1·Δla− and the absolute amount of change in AT-VO2 (r=0.94, P<0.01). Furthermore, the absolute amount of change in C02 excess·mass−1·Δla−, as well as that in AT-VO2 (r=0.92, P<0.01), was significantly related to the absolute amount of change in 12-min ERP (r=0.81, P<0.05). It was concluded that a large CO2excess·mass−1·Δla−1 of endurance runners could be an important factor for success in performance related to comparatively intense endurance exercise such as 3000–4000 m races.

収録刊行物

被引用文献 (4)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ